Please use this identifier to cite or link to this item: http://cris.unibe.edu.do/handle/123456789/31
DC FieldValueLanguage
dc.contributor.authorGarrido, Luis Eduardo-
dc.date.accessioned2021-03-10T21:28:48Z-
dc.date.available2021-03-10T21:28:48Z-
dc.date.issued2016-
dc.identifier.citationPsychological Methods, 21(1), 93–111-
dc.identifier.issn1082-989X-
dc.identifier.urihttps://cris.unibe.edu.do/10486/678704-
dc.identifier.urihttps://cris.unibe.edu.do/handle/123456789/31-
dc.description.abstractAn early step in the process of construct validation consists of establishing the fit of an unrestricted “exploratory” factorial model for a prespecified number of common factors. For this initial unrestricted model, researchers have often recommended and used fit indices to estimate the number of factors to retain. Despite the logical appeal of this approach, little is known about the actual accuracy of fit indices in the estimation of data dimensionality. The present study aimed to reduce this gap by systematically evaluating the performance of 4 commonly used fit indices—the comparative fit index (CFI), the Tucker-Lewis index (TLI), the root mean square error of approximation (RMSEA), and the standardized root mean square residual (SRMR)—in the estimation of the number of factors with categorical variables, and comparing it with what is arguably the current golden rule, Horn’s (1965) parallel analysis. The results indicate that the CFI and TLI provide nearly identical estimations and are the most accurate fit indices, followed at a step below by the RMSEA, and then by the SRMR, which gives notably poor dimensionality estimates. Difficulties in establishing optimal cutoff values for the fit indices and the general superiority of parallel analysis, however, suggest that applied researchers are better served by complementing their theoretical considerations regarding dimensionality with the estimates provided by the latter method. (APA PsycInfo Database Record (c) 2016 APA, all rights reserved)en
dc.language.isoEnglish-
dc.publisherAmerican Psychological Association-
dc.relation.ispartofPsychological Methods-
dc.subjectCiencias de la Salud-
dc.subjectCiencias Sociales-
dc.titleAre fit indices really fit to estimate the number of factors with categorical variables? Some cautionary findings via Monte Carlo simulationen
dc.typeJournal Article-
dc.rights.licenseThis is an author produced version of a paper published in: Psychological Methods 21.1 (2016): 93–111 DOI: http://dx.doi.org/10.1037/met0000064. Copyright: © American Psychological Association, 2015. Access to the published version may require subscription. This paper is not the copy of record and may not exactly replicate the authoritative document published in the APA journal. Open access version available at Repositorio Institucional de la Universidad Autónoma de Madrid.-
dc.identifier.doi10.1037/met0000064-
dc.identifier.pmid26651983-
dc.contributor.affiliationDecanato de Investigación e Innovación (DII)-
dc.relation.issn1082-989X-
dc.description.volume21-
dc.description.issue1-
dc.description.startpage93-
dc.description.endpage111-
dc.subject.keywordsData Interpretationen
dc.subject.keywordsStatistical humans modelsen
dc.subject.keywordsFit indicesen
dc.subject.keywordsNumber of factorsen
dc.subject.keywordsCategorical variablesen
dc.subject.keywordsExploratory structural equation modelingen
dc.subject.keywordsParallel analysisen
dc.subject.keywordsStatistical Monte Carlo Methoden
dc.contributor.authorsGarrido, Luis Eduardo-
dc.contributor.authorsAbad García, F. J.-
dc.contributor.authorsPonsoda, V.-
dc.typeofaccessOpen Access-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.fulltextCon texto completo -
item.openairetypeJournal Article-
item.languageiso639-1English-
crisitem.author.deptDecanato de Investigación e Innovación (DII)-
crisitem.author.parentorgUniversidad Iberoamericana (UNIBE)-
Appears in Collections:Publicaciones del DII-UNIBE
Publicaciones indexadas en Scopus / Web of Science
Files in This Item:
File Description SizeFormat
Are fit indices really fit.pdfFull text [author version - open access]1.76 MBAdobe PDFThumbnail
View/Open
Show simple item record Recommend this item

Google ScholarTM

Citations

Altmetric

Mentions

Dimensions

Citations


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.