Por favor, use este identificador para citar o enlazar este ítem: http://cris.unibe.edu.do/handle/123456789/31
Título : Are fit indices really fit to estimate the number of factors with categorical variables? Some cautionary findings via Monte Carlo simulation
Autores: Garrido, Luis Eduardo
Abad García, F. J.
Ponsoda, V.
Investigadores (UNIBE): Garrido, Luis Eduardo 
Afiliaciones : Decanato de Investigación e Innovación (DII) 
Área de investigación : Ciencias de la Salud; Ciencias Sociales
Palabras clave: Data Interpretation; Statistical humans models; Fit indices; Number of factors; Categorical variables; Exploratory structural equation modeling; Parallel analysis; Statistical Monte Carlo Method
Fecha de publicación : 2016
Editorial : American Psychological Association
Publicado en: Psychological Methods, 21(1), 93–111
Revista: Psychological Methods 
Volumen : 21
Número : 1
Página de inicio : 93
Página final : 111
Resumen : 
An early step in the process of construct validation consists of establishing the fit of an unrestricted “exploratory” factorial model for a prespecified number of common factors. For this initial unrestricted model, researchers have often recommended and used fit indices to estimate the number of factors to retain. Despite the logical appeal of this approach, little is known about the actual accuracy of fit indices in the estimation of data dimensionality. The present study aimed to reduce this gap by systematically evaluating the performance of 4 commonly used fit indices—the comparative fit index (CFI), the Tucker-Lewis index (TLI), the root mean square error of approximation (RMSEA), and the standardized root mean square residual (SRMR)—in the estimation of the number of factors with categorical variables, and comparing it with what is arguably the current golden rule, Horn’s (1965) parallel analysis. The results indicate that the CFI and TLI provide nearly identical estimations and are the most accurate fit indices, followed at a step below by the RMSEA, and then by the SRMR, which gives notably poor dimensionality estimates. Difficulties in establishing optimal cutoff values for the fit indices and the general superiority of parallel analysis, however, suggest that applied researchers are better served by complementing their theoretical considerations regarding dimensionality with the estimates provided by the latter method. (APA PsycInfo Database Record (c) 2016 APA, all rights reserved)
URI : https://cris.unibe.edu.do/10486/678704
https://cris.unibe.edu.do/handle/123456789/31
ISSN : 1082-989X
DOI : 10.1037/met0000064
Aparece en las colecciones: Publicaciones del DII-UNIBE
Publicaciones indexadas en Scopus / Web of Science

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Are fit indices really fit.pdfFull text [author version - open access]1.76 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro Dublin Core completo del ítem Recomiende este ítem

Google ScholarTM

Citas

Altmetric

Menciones

Dimensions

Citas


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.